Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787314

RESUMO

Background: De novo mutations underlie individually rare but collectively common pediatric congenital disorders. Some of these mutations can also be detected in tissues and from cells in a parent, where their abundance and tissue distribution can be measured. We previously reported that a subset of these mutations is detectable in sperm from the father, predicted to impact the health of offspring. Methods: As a cohort study, in three independent couples undergoing in vitro fertilization, we first identified male gonadal mosaicism through deep whole genome sequencing. We then confirmed variants and assessed their transmission to preimplantation blastocysts (32 total) through targeted ultra-deep genotyping. Results: Across 55 gonadal mosaic variants, 15 were transmitted to blastocysts for a total of 19 transmission events. This represented an overall predictable but slight undertransmission based upon the measured mutational abundance in sperm. We replicated this conclusion in an independent, previously published family-based cohort. Conclusions: Unbiased preimplantation genetic testing for gonadal mosaicism may represent a feasible approach to reduce the transmission of potentially harmful de novo mutations. This-in turn-could help to reduce their impact on miscarriages and pediatric disease. Funding: No external funding was received for this work.


Assuntos
Mosaicismo , Sêmen , Criança , Estudos de Coortes , Humanos , Masculino , Software , Espermatozoides
2.
Nature ; 604(7907): 689-696, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444276

RESUMO

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Assuntos
Células Clonais , Mosaicismo , Neocórtex , Linhagem da Célula , Células Cultivadas , Humanos , Microglia , Neocórtex/citologia , Neocórtex/crescimento & desenvolvimento
3.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34587386

RESUMO

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Congênitas/genética , Pleiotropia Genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Mutação , Receptores Acoplados a Proteínas G/genética , Proteínas Wnt/metabolismo , Animais , Modelos Animais de Doenças , Fibroblastos/metabolismo , Técnicas de Introdução de Genes , Genes Recessivos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Transgênicos , Linhagem , Fenótipo , Receptores Acoplados a Proteínas G/metabolismo , Síndrome , Via de Sinalização Wnt
4.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388390

RESUMO

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Assuntos
Crescimento e Desenvolvimento , Mosaicismo , Espermatozoides/metabolismo , Adolescente , Envelhecimento/sangue , Alelos , Células Clonais , Estudos de Coortes , Humanos , Masculino , Modelos Biológicos , Mutação/genética , Fatores de Risco , Fatores de Tempo , Adulto Jovem
5.
Am J Med Genet A ; 185(1): 119-133, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33098347

RESUMO

Dubowitz syndrome (DubS) is considered a recognizable syndrome characterized by a distinctive facial appearance and deficits in growth and development. There have been over 200 individuals reported with Dubowitz or a "Dubowitz-like" condition, although no single gene has been implicated as responsible for its cause. We have performed exome (ES) or genome sequencing (GS) for 31 individuals clinically diagnosed with DubS. After genome-wide sequencing, rare variant filtering and computational and Mendelian genomic analyses, a presumptive molecular diagnosis was made in 13/27 (48%) families. The molecular diagnoses included biallelic variants in SKIV2L, SLC35C1, BRCA1, NSUN2; de novo variants in ARID1B, ARID1A, CREBBP, POGZ, TAF1, HDAC8, and copy-number variation at1p36.11(ARID1A), 8q22.2(VPS13B), Xp22, and Xq13(HDAC8). Variants of unknown significance in known disease genes, and also in genes of uncertain significance, were observed in 7/27 (26%) additional families. Only one gene, HDAC8, could explain the phenotype in more than one family (N = 2). All but two of the genomic diagnoses were for genes discovered, or for conditions recognized, since the introduction of next-generation sequencing. Overall, the DubS-like clinical phenotype is associated with extensive locus heterogeneity and the molecular diagnoses made are for emerging clinical conditions sharing characteristic features that overlap the DubS phenotype.


Assuntos
Eczema/diagnóstico , Eczema/genética , Predisposição Genética para Doença , Transtornos do Crescimento/diagnóstico , Transtornos do Crescimento/genética , Histona Desacetilases/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Microcefalia/diagnóstico , Microcefalia/genética , Proteínas Repressoras/genética , Adolescente , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Eczema/patologia , Exoma/genética , Facies , Feminino , Genoma Humano/genética , Genômica/métodos , Transtornos do Crescimento/patologia , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Fenótipo , Sequenciamento do Exoma
6.
J Med Genet ; 58(4): 237-246, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32439809

RESUMO

BACKGROUND: Intellectual disability syndromes (IDSs) with or without developmental delays affect up to 3% of the world population. We sought to clinically and genetically characterise a novel IDS segregating in five unrelated consanguineous families. METHODS: Clinical analyses were performed for eight patients with intellectual disability (ID). Whole-exome sequencing for selected participants followed by Sanger sequencing for all available family members was completed. Identity-by-descent (IBD) mapping was carried out for patients in two Egyptian families harbouring an identical variant. RNA was extracted from blood cells of Turkish participants, followed by cDNA synthesis and real-time PCR for TTC5. RESULTS: Phenotype comparisons of patients revealed shared clinical features of moderate-to-severe ID, corpus callosum agenesis, mild ventriculomegaly, simplified gyral pattern, cerebral atrophy, delayed motor and verbal milestones and hypotonia, presenting with an IDS. Four novel homozygous variants in TTC5: c.629A>G;p.(Tyr210Cys), c.692C>T;p.(Ala231Val), c.787C>T;p.(Arg263Ter) and c.1883C>T;p.(Arg395Ter) were identified in the eight patients from participating families. IBD mapping revealed that c.787C>T;p.(Arg263Ter) is a founder variant in Egypt. Missense variants c.629A>G;p.(Tyr210Cys) and c.692C>T;p.(Ala231Val) disrupt highly conserved residues of TTC5 within the fifth and sixth tetratricopeptide repeat motifs which are required for p300 interaction, while the nonsense variants are predicted to decrease TTC5 expression. Functional analysis of variant c.1883C>T;p.(Arg395Ter) showed reduced TTC5 transcript levels in accordance with nonsense-mediated decay. CONCLUSION: Combining our clinical and molecular data with a recent case report, we identify the core and variable clinical features associated with TTC5 loss-of-function variants and reveal the requirement for TTC5 in human brain development and health.


Assuntos
Deficiências do Desenvolvimento/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Fatores de Transcrição/genética , Alelos , Criança , Pré-Escolar , Deficiências do Desenvolvimento/epidemiologia , Deficiências do Desenvolvimento/patologia , Egito/epidemiologia , Exoma/genética , Feminino , Homozigoto , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/patologia , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma
7.
Genet Med ; 23(3): 524-533, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33188300

RESUMO

PURPOSE: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown. METHODS: We applied exome sequencing in a cohort of over 10,000 individuals with neurodevelopmental diseases. Effects of HPDL loss were investigated in vitro and in vivo, and through mass spectrometry analysis. Evolutionary analysis was performed to investigate the potential functional separation of HPDL from HPD. RESULTS: We identified biallelic variants in HPDL in eight families displaying recessive inheritance. Knockout mice closely phenocopied humans and showed evidence of apoptosis in multiple cellular lineages within the cerebral cortex. HPDL is a single-exonic gene that likely arose from a retrotransposition event at the base of the tetrapod lineage, and unlike HPD, HPDL is mitochondria-localized. Metabolic profiling of HPDL mutant cells and mice showed no evidence of altered tyrosine metabolites, but rather notable accumulations in other metabolic pathways. CONCLUSION: The mitochondrial localization, along with its disrupted metabolic profile, suggests HPDL loss in humans links to a unique neurometabolic mitochondrial infantile neurodegenerative condition.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase , Dioxigenases , 4-Hidroxifenilpiruvato Dioxigenase/genética , Animais , Éxons , Humanos , Camundongos , Camundongos Knockout , Fenótipo
8.
BMC Med Genomics ; 13(1): 68, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404165

RESUMO

BACKGROUND: The causes for thousands of individually rare recessive diseases have been discovered since the adoption of next generation sequencing (NGS). Following the molecular diagnosis in older children in a family, parents could use this information to opt for fetal genotyping in subsequent pregnancies, which could inform decisions about elective termination of pregnancy. The use of NGS diagnostic sequencing in families has not been demonstrated to yield benefit in subsequent pregnancies to reduce recurrence. Here we evaluated whether genetic diagnosis in older children in families supports reduction in recurrence of recessive neurogenetic disease. METHODS: Retrospective study involving families with a child with a recessive pediatric brain disease (rPBD) that underwent NGS-based molecular diagnosis. Prenatal molecular testing was offered to couples in which a molecular diagnosis was made, to help couples seeking to prevent recurrence. With this information, families made decisions about elective termination. Pregnancies that were carried to term were assessed for the health of child and mother, and compared with historic recurrence risk of recessive disease. RESULTS: Between 2010 and 2016, 1172 families presented with a child a likely rPBD, 526 families received a molecular diagnosis, 91 families returned to the clinic with 101 subsequent pregnancies, and 84 opted for fetal genotyping. Sixty tested negative for recurrence for the biallelic mutation in the fetus, and all, except for one spontaneous abortion, carried to term, and were unaffected at follow-up. Of 24 that genotyped positive for the biallelic mutation, 16 were electively terminated, and 8 were carried to term and showed features of disease similar to that of the older affected sibling(s). Among the 101 pregnancies, disease recurrence in living offspring deviated from the expected 25% to the observed 12% ([95% CI 0·04 to 0·20], p = 0·011). CONCLUSIONS: Molecular diagnosis in an older child, coupled with prenatal fetal genotyping in subsequent pregnancies and genetic counselling, allows families to make informed decisions to reduce recessive neurogenetic disease recurrence.


Assuntos
Genes Recessivos , Marcadores Genéticos , Predisposição Genética para Doença , Testes Genéticos , Mutação , Doenças do Sistema Nervoso/diagnóstico , Diagnóstico Pré-Natal/métodos , Pré-Escolar , Feminino , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Recém-Nascido , Masculino , Doenças do Sistema Nervoso/genética , Linhagem , Gravidez , Recidiva , Estudos Retrospectivos
9.
Nat Med ; 26(1): 143-150, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873310

RESUMO

De novo mutations arising on the paternal chromosome make the largest known contribution to autism risk, and correlate with paternal age at the time of conception. The recurrence risk for autism spectrum disorders is substantial, leading many families to decline future pregnancies, but the potential impact of assessing parental gonadal mosaicism has not been considered. We measured sperm mosaicism using deep-whole-genome sequencing, for variants both present in an offspring and evident only in father's sperm, and identified single-nucleotide, structural and short tandem-repeat variants. We found that mosaicism quantification can stratify autism spectrum disorders recurrence risk due to de novo mutations into a vast majority with near 0% recurrence and a small fraction with a substantially higher and quantifiable risk, and we identify novel mosaic variants at risk for transmission to a future offspring. This suggests, therefore, that genetic counseling would benefit from the addition of sperm mosaicism assessment.


Assuntos
Transtorno Autístico/genética , Predisposição Genética para Doença , Mosaicismo , Espermatozoides/metabolismo , Transtorno Autístico/sangue , Feminino , Humanos , Masculino , Mutação/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Recidiva , Fatores de Risco
10.
Am J Hum Genet ; 105(4): 844-853, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585108

RESUMO

Lissencephaly is a severe brain malformation in which failure of neuronal migration results in agyria or pachygyria and in which the brain surface appears unusually smooth. It is often associated with microcephaly, profound intellectual disability, epilepsy, and impaired motor abilities. Twenty-two genes are associated with lissencephaly, accounting for approximately 80% of disease. Here we report on 12 individuals with a unique form of lissencephaly; these individuals come from eight unrelated families and have bi-allelic mutations in APC2, encoding adenomatous polyposis coli protein 2. Brain imaging studies demonstrate extensive posterior predominant lissencephaly, similar to PAFAH1B1-associated lissencephaly, as well as co-occurrence of subcortical heterotopia posterior to the caudate nuclei, "ribbon-like" heterotopia in the posterior frontal region, and dysplastic in-folding of the mesial occipital cortex. The established role of APC2 in integrating the actin and microtubule cytoskeletons to mediate cellular morphological changes suggests shared function with other lissencephaly-encoded cytoskeletal proteins such as α-N-catenin (CTNNA2) and platelet-activating factor acetylhydrolase 1b regulatory subunit 1 (PAFAH1B1, also known as LIS1). Our findings identify APC2 as a radiographically distinguishable recessive form of lissencephaly.


Assuntos
Alelos , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Proteínas do Citoesqueleto/genética , Deficiências do Desenvolvimento/genética , Lisencefalia/genética , Feminino , Humanos , Masculino , Linhagem
11.
Hum Mol Genet ; 28(22): 3755-3765, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31411685

RESUMO

Single germline or somatic activating mutations of mammalian target of rapamycin (mTOR) pathway genes are emerging as a major cause of type II focal cortical dysplasia (FCD), hemimegalencephaly (HME) and tuberous sclerosis complex (TSC). A double-hit mechanism, based on a primary germline mutation in one allele and a secondary somatic hit affecting the other allele of the same gene in a small number of cells, has been documented in some patients with TSC or FCD. In a patient with HME, severe intellectual disability, intractable seizures and hypochromic skin patches, we identified the ribosomal protein S6 (RPS6) p.R232H variant, present as somatic mosaicism at ~15.1% in dysplastic brain tissue and ~11% in blood, and the MTOR p.S2215F variant, detected as ~8.8% mosaicism in brain tissue, but not in blood. Overexpressing the two variants independently in animal models, we demonstrated that MTOR p.S2215F caused neuronal migration delay and cytomegaly, while RPS6 p.R232H prompted increased cell proliferation. Double mutants exhibited a more severe phenotype, with increased proliferation and migration defects at embryonic stage and, at postnatal stage, cytomegalic cells exhibiting eccentric nuclei and binucleation, which are typical features of balloon cells. These findings suggest a synergistic effect of the two variants. This study indicates that, in addition to single activating mutations and double-hit inactivating mutations in mTOR pathway genes, severe forms of cortical dysplasia can also result from activating mutations affecting different genes in this pathway. RPS6 is a potential novel disease-related gene.


Assuntos
Hemimegalencefalia/genética , Proteína S6 Ribossômica/genética , Serina-Treonina Quinases TOR/genética , Animais , Encéfalo/metabolismo , Criança , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/metabolismo , Epilepsia/genética , Feminino , Humanos , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/metabolismo , Malformações do Desenvolvimento Cortical do Grupo I/genética , Camundongos , Mosaicismo , Mutação , Neurônios/metabolismo , Proteína S6 Ribossômica/metabolismo , Serina-Treonina Quinases TOR/metabolismo
12.
Ann Neurol ; 84(5): 638-647, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30178464

RESUMO

OBJECTIVE: To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS: Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS: All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION: DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.


Assuntos
Tronco Encefálico/anormalidades , Caderinas/genética , Malformações do Sistema Nervoso/genética , Malformações do Sistema Nervoso/patologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Protocaderinas
13.
Hum Genet ; 137(9): 753-768, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30167850

RESUMO

NALCN is a conserved cation channel, which conducts a permanent sodium leak current and regulates resting membrane potential and neuronal excitability. It is part of a large ion channel complex, the "NALCN channelosome", consisting of multiple proteins including UNC80 and UNC79. The predominant neuronal expression pattern and its function suggest an important role in neuronal function and disease. So far, biallelic NALCN and UNC80 variants have been described in a small number of individuals leading to infantile hypotonia, psychomotor retardation, and characteristic facies 1 (IHPRF1, OMIM 615419) and 2 (IHPRF2, OMIM 616801), respectively. Heterozygous de novo NALCN missense variants in the S5/S6 pore-forming segments lead to congenital contractures of the limbs and face, hypotonia, and developmental delay (CLIFAHDD, OMIM 616266) with some clinical overlap. In this study, we present detailed clinical information of 16 novel individuals with biallelic NALCN variants, 1 individual with a heterozygous de novo NALCN missense variant and an interesting clinical phenotype without contractures, and 12 individuals with biallelic UNC80 variants. We report for the first time a missense NALCN variant located in the predicted S6 pore-forming unit inherited in an autosomal-recessive manner leading to mild IHPRF1. We show evidence of clinical variability, especially among IHPRF1-affected individuals, and discuss differences between the IHPRF1- and IHPRF2 phenotypes. In summary, we provide a comprehensive overview of IHPRF1 and IHPRF2 phenotypes based on the largest cohort of individuals reported so far and provide additional insights into the clinical phenotypes of these neurodevelopmental diseases to help improve counseling of affected families.


Assuntos
Proteínas de Transporte/genética , Canalopatias/genética , Deficiências do Desenvolvimento/genética , Marcadores Genéticos , Variação Genética , Proteínas de Membrana/genética , Canais de Sódio/genética , Adolescente , Adulto , Canalopatias/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Canais Iônicos , Masculino , Fenótipo , Adulto Jovem
14.
Eur J Hum Genet ; 26(3): 330-339, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29343805

RESUMO

Kinesin proteins are critical for various cellular functions such as intracellular transport and cell division, and many members of the family have been linked to monogenic disorders and cancer. We report eight individuals with intellectual disability and microcephaly from four unrelated families with parental consanguinity. In the affected individuals of each family, homozygosity for likely pathogenic variants in KIF14 were detected; two loss-of-function (p.Asn83Ilefs*3 and p.Ser1478fs), and two missense substitutions (p.Ser841Phe and p.Gly459Arg). KIF14 is a mitotic motor protein that is required for spindle localization of the mitotic citron rho-interacting kinase, CIT, also mutated in microcephaly. Our results demonstrate the involvement of KIF14 in development and reveal a wide phenotypic variability ranging from fetal lethality to moderate developmental delay and microcephaly.


Assuntos
Deficiência Intelectual/genética , Cinesinas/genética , Microcefalia/genética , Proteínas Oncogênicas/genética , Criança , Pré-Escolar , Feminino , Humanos , Deficiência Intelectual/patologia , Cinesinas/química , Cinesinas/metabolismo , Mutação com Perda de Função , Microcefalia/patologia , Mutação de Sentido Incorreto , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Linhagem , Fenótipo , Domínios Proteicos , Síndrome
15.
Hum Mol Genet ; 26(2): 258-269, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28013290

RESUMO

The integrity and dynamic properties of the microtubule cytoskeleton are indispensable for the development of the mammalian brain. Consequently, mutations in the genes that encode the structural component (the α/ß-tubulin heterodimer) can give rise to severe, sporadic neurodevelopmental disorders. These are commonly referred to as the tubulinopathies. Here we report the addition of recessive quadrupedalism, also known as Uner Tan syndrome (UTS), to the growing list of diseases caused by tubulin variants. Analysis of a consanguineous UTS family identified a biallelic TUBB2B mutation, resulting in a p.R390Q amino acid substitution. In addition to the identifying quadrupedal locomotion, all three patients showed severe cerebellar hypoplasia. None, however, displayed the basal ganglia malformations typically associated with TUBB2B mutations. Functional analysis of the R390Q substitution revealed that it did not affect the ability of ß-tubulin to fold or become assembled into the α/ß-heterodimer, nor did it influence the incorporation of mutant-containing heterodimers into microtubule polymers. The 390Q mutation in S. cerevisiae TUB2 did not affect growth under basal conditions, but did result in increased sensitivity to microtubule-depolymerizing drugs, indicative of a mild impact of this mutation on microtubule function. The TUBB2B mutation described here represents an unusual recessive mode of inheritance for missense-mediated tubulinopathies and reinforces the sensitivity of the developing cerebellum to microtubule defects.


Assuntos
Cerebelo/anormalidades , Malformações do Desenvolvimento Cortical/genética , Microtúbulos/genética , Malformações do Sistema Nervoso/genética , Tubulina (Proteína)/genética , Adulto , Substituição de Aminoácidos/genética , Gânglios da Base/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Cerebelo/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Feminino , Homozigoto , Humanos , Masculino , Malformações do Desenvolvimento Cortical/fisiopatologia , Microtúbulos/patologia , Mutação , Malformações do Sistema Nervoso/fisiopatologia , Fenótipo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...